[數量經濟學Seminar]Generalized least squares model averaging
發文時間:2016-03-10
中國人民大學經濟學院 數量經濟學Seminar  
題目:Generalized least squares model averaging
報告人:劉慶豐 教授

時間:2016年3月18日(周五)10:30-12:00

地點:明德主樓734會議室

       
 
Abstract: In this article, we propose a method of averaging generalized least
squares estimators for linear regression models with heteroskedastic
errors. The averaging weights are chosen to minimize Mallows’ Cp-like
criterion. We show that the weight vector selected by our method is
optimal. It is also shown that this optimality holds even when the
variances of the error terms are estimated and the feasible
generalized least squares estimators are averaged. The variances can
be estimated parametrically or nonparametrically. Monte Carlo
simulation results are encouraging. An empirical example illustrates
that the proposed method is useful for predicting a measure of firms’
performance.
 
報告人簡介:日本國立小樽商科大學教授,日本京都大學經濟研究所訪問教授。2007年獲得日本京都大學經濟學博士,2008年在美國普林斯頓大學做博士后研究。研究領域為計量經濟理論與方法,研究成果發表在Econometrics Journal, Econometric Reviews, Mathematics and Computers in Simulation等多個國際專業雜志。
 
 
 
中國人民大學經濟學院 數量經濟學教研室 2016年3月11日